Congruence of Hermitian matrices by Hermitian matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence of Hermitian Matrices by Hermitian Matrices

Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...

متن کامل

Unitary Matrices and Hermitian Matrices

Unitary Matrices and Hermitian Matrices Recall that the conjugate of a complex number a + bi is a − bi. The conjugate of a + bi is denoted a+ bi or (a+ bi)∗. In this section, I’ll use ( ) for complex conjugation of numbers of matrices. I want to use ( )∗ to denote an operation on matrices, the conjugate transpose. Thus, 3 + 4i = 3− 4i, 5− 6i = 5 + 6i, 7i = −7i, 10 = 10. Complex conjugation sati...

متن کامل

Diagonal Norm Hermitian Matrices

If v is a norm on en, let H(v) denote the set of all norm-Hermitians in e nn. Let S be a subset of the set of real diagonal matrices D. Then there exists a norm v such that S = H(v) (or S = H(v) n D) if and only if S contains the identity and S is a subspace of D with a basis consisting of rational vectors. As a corollary, it is shown that, for a diagonable matrix h with distinct eigenvalues .1...

متن کامل

Essentially Hermitian matrices revisited

The following case of the Determinantal Conjecture of Marcus and de Oliveira is established. Let A and C be hermitian n × n matrices with prescribed eigenvalues a1, . . . , an and c1, . . . , cn, respectively. Let κ be a non-real unimodular complex number, B = κC, bj = κcj for j = 1, . . . , n. Then det(A− B) ∈ co 8< : n Y j=1 (aj − bσ(j)); σ ∈ Sn 9= ; , where Sn denotes the group of all permut...

متن کامل

Eigenvalues of Majorized Hermitian Matrices

Answering a question raised by S. Friedland, we show that the possible eigenvalues of Hermitian matrices (or compact operators) A, B, and C with C ≤ A+B are given by the same inequalities as in Klyachko’s theorem for the case where C = A + B, except that the equality corresponding to tr(C) = tr(A) + tr(B) is replaced by the inequality corresponding to tr(C) ≤ tr(A) + tr(B). The possible types o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2007

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.03.016